混合检索策略
引言
在实际应用中,单一的检索方法往往无法满足所有需求。混合检索策略通过结合多种检索方法的优势,能够显著提升RAG系统的检索效果。本文将深入探讨各种混合检索策略的原理、实现和优化方法。
混合检索概述
什么是混合检索
混合检索是指将多种不同的检索方法结合起来,通过融合它们的优势来提升整体检索效果的技术。常见的混合方式包括:
- 语义检索 + 关键词检索
- 多模型融合
- 多阶段检索
- 自适应检索
混合检索的优势
混合检索的挑战
- 计算复杂度:需要运行多种检索算法
- 结果融合:如何有效融合不同方法的结果
- 权重调优:确定各方法的最优权重
- 性能平衡:在效果和效率之间找到平衡
语义检索 + 关键词检索
1. 基础混合检索
实现原理
结合语义检索的语义理解能力和关键词检索的精确匹配能力,通过加权融合提升整体效果。
实现示例
python
import numpy as np
from typing import List, Dict, Tuple, Set
from sentence_transformers import SentenceTransformer
import jieba
from collections import Counter
class HybridSemanticKeywordRetriever:
def __init__(self, embedding_model: SentenceTransformer,
documents: List[str], alpha: float = 0.7):
self.embedding_model = embedding_model
self.documents = documents
self.alpha = alpha # 语义检索权重
self.beta = 1 - alpha # 关键词检索权重
# 构建关键词索引
self.keyword_index = self._build_keyword_index()
# 计算文档向量
self.document_embeddings = self.embedding_model.encode(documents)
def _build_keyword_index(self) -> Dict[str, Set[int]]:
"""构建关键词倒排索引"""
keyword_index = {}
for doc_id, document in enumerate(self.documents):
# 分词
words = jieba.cut(document)
# 构建索引
for word in words:
word = word.strip().lower()
if len(word) > 1: # 过滤单字符词
if word not in keyword_index:
keyword_index[word] = set()
keyword_index[word].add(doc_id)
return keyword_index
def retrieve(self, query: str, top_k: int = 10) -> List[Tuple[int, float]]:
"""混合检索"""
# 语义检索
semantic_results = self._semantic_search(query, top_k * 2)
# 关键词检索
keyword_results = self._keyword_search(query, top_k * 2)
# 融合结果
combined_results = self._fuse_results(semantic_results, keyword_results)
return combined_results[:top_k]
def _semantic_search(self, query: str, top_k: int) -> List[Tuple[int, float]]:
"""语义检索"""
query_embedding = self.embedding_model.encode([query])
# 计算余弦相似度
similarities = np.dot(self.document_embeddings, query_embedding.T).flatten()
# 获取top-k结果
top_indices = np.argsort(similarities)[::-1][:top_k]
results = [(idx, float(similarities[idx])) for idx in top_indices]
return results
def _keyword_search(self, query: str, top_k: int) -> List[Tuple[int, float]]:
"""关键词检索"""
query_words = list(jieba.cut(query))
query_words = [word.strip().lower() for word in query_words if len(word.strip()) > 1]
# 计算文档分数
doc_scores = {}
for word in query_words:
if word in self.keyword_index:
for doc_id in self.keyword_index[word]:
if doc_id not in doc_scores:
doc_scores[doc_id] = 0
doc_scores[doc_id] += 1
# 归一化分数
if doc_scores:
max_score = max(doc_scores.values())
doc_scores = {doc_id: score / max_score for doc_id, score in doc_scores.items()}
# 排序并返回top-k
results = [(doc_id, score) for doc_id, score in doc_scores.items()]
results.sort(key=lambda x: x[1], reverse=True)
return results[:top_k]
def _fuse_results(self, semantic_results: List[Tuple[int, float]],
keyword_results: List[Tuple[int, float]]) -> List[Tuple[int, float]]:
"""融合检索结果"""
# 创建文档ID到分数的映射
doc_scores = {}
# 添加语义检索分数
for doc_id, score in semantic_results:
doc_scores[doc_id] = self.alpha * score
# 添加关键词检索分数
for doc_id, score in keyword_results:
if doc_id in doc_scores:
doc_scores[doc_id] += self.beta * score
else:
doc_scores[doc_id] = self.beta * score
# 排序并返回
combined_results = [(doc_id, score) for doc_id, score in doc_scores.items()]
combined_results.sort(key=lambda x: x[1], reverse=True)
return combined_results2. 自适应权重混合检索
实现原理
根据查询特征动态调整语义检索和关键词检索的权重,实现更智能的混合检索。
实现示例
python
class AdaptiveHybridRetriever:
def __init__(self, embedding_model: SentenceTransformer, documents: List[str]):
self.embedding_model = embedding_model
self.documents = documents
self.keyword_index = self._build_keyword_index()
self.document_embeddings = self.embedding_model.encode(documents)
def retrieve(self, query: str, top_k: int = 10) -> List[Tuple[int, float]]:
"""自适应混合检索"""
# 分析查询特征
query_features = self._analyze_query(query)
# 动态调整权重
alpha, beta = self._calculate_weights(query_features)
# 执行混合检索
semantic_results = self._semantic_search(query, top_k * 2)
keyword_results = self._keyword_search(query, top_k * 2)
# 使用动态权重融合结果
combined_results = self._fuse_results(semantic_results, keyword_results, alpha, beta)
return combined_results[:top_k]
def _analyze_query(self, query: str) -> Dict[str, float]:
"""分析查询特征"""
features = {}
# 查询长度特征
features['length'] = len(query)
# 专业术语密度
features['technical_density'] = self._calculate_technical_density(query)
# 语义复杂度
features['semantic_complexity'] = self._calculate_semantic_complexity(query)
# 关键词匹配度
features['keyword_match'] = self._calculate_keyword_match(query)
return features
def _calculate_technical_density(self, query: str) -> float:
"""计算专业术语密度"""
# 定义专业术语词典
technical_terms = {
'算法', '机器学习', '深度学习', '神经网络', '人工智能',
'数据挖掘', '自然语言处理', '计算机视觉', '推荐系统'
}
words = list(jieba.cut(query))
technical_count = sum(1 for word in words if word in technical_terms)
return technical_count / len(words) if words else 0
def _calculate_semantic_complexity(self, query: str) -> float:
"""计算语义复杂度"""
# 使用embedding的方差作为语义复杂度的指标
query_embedding = self.embedding_model.encode([query])
variance = np.var(query_embedding)
return float(variance)
def _calculate_keyword_match(self, query: str) -> float:
"""计算关键词匹配度"""
query_words = list(jieba.cut(query))
query_words = [word.strip().lower() for word in query_words if len(word.strip()) > 1]
# 计算有多少查询词在索引中存在
matched_words = sum(1 for word in query_words if word in self.keyword_index)
return matched_words / len(query_words) if query_words else 0
def _calculate_weights(self, query_features: Dict[str, float]) -> Tuple[float, float]:
"""计算动态权重"""
# 基于查询特征计算权重
technical_density = query_features['technical_density']
semantic_complexity = query_features['semantic_complexity']
keyword_match = query_features['keyword_match']
# 专业术语多时,增加语义检索权重
if technical_density > 0.3:
alpha = 0.8
# 关键词匹配度高时,增加关键词检索权重
elif keyword_match > 0.7:
alpha = 0.4
# 语义复杂度高时,增加语义检索权重
elif semantic_complexity > 0.5:
alpha = 0.7
else:
alpha = 0.6
beta = 1 - alpha
return alpha, beta
def _fuse_results(self, semantic_results: List[Tuple[int, float]],
keyword_results: List[Tuple[int, float]],
alpha: float, beta: float) -> List[Tuple[int, float]]:
"""使用动态权重融合结果"""
doc_scores = {}
# 添加语义检索分数
for doc_id, score in semantic_results:
doc_scores[doc_id] = alpha * score
# 添加关键词检索分数
for doc_id, score in keyword_results:
if doc_id in doc_scores:
doc_scores[doc_id] += beta * score
else:
doc_scores[doc_id] = beta * score
# 排序并返回
combined_results = [(doc_id, score) for doc_id, score in doc_scores.items()]
combined_results.sort(key=lambda x: x[1], reverse=True)
return combined_results多模型融合检索
1. 多Embedding模型融合
实现原理
使用多个不同的embedding模型进行检索,然后融合它们的结果,提升检索的鲁棒性和准确性。
实现示例
python
class MultiModelRetriever:
def __init__(self, models: List[SentenceTransformer], weights: List[float] = None):
self.models = models
self.weights = weights or [1.0] * len(models)
# 归一化权重
total_weight = sum(self.weights)
self.weights = [w / total_weight for w in self.weights]
def retrieve(self, query: str, documents: List[str], top_k: int = 10) -> List[Tuple[int, float]]:
"""多模型融合检索"""
all_results = []
# 使用每个模型进行检索
for model, weight in zip(self.models, self.weights):
results = self._search_with_model(model, query, documents, top_k * 2)
# 应用权重
weighted_results = [(doc_id, score * weight) for doc_id, score in results]
all_results.extend(weighted_results)
# 融合结果
fused_results = self._fuse_multi_model_results(all_results)
return fused_results[:top_k]
def _search_with_model(self, model: SentenceTransformer, query: str,
documents: List[str], top_k: int) -> List[Tuple[int, float]]:
"""使用单个模型进行检索"""
query_embedding = model.encode([query])
document_embeddings = model.encode(documents)
# 计算相似度
similarities = np.dot(document_embeddings, query_embedding.T).flatten()
# 获取top-k结果
top_indices = np.argsort(similarities)[::-1][:top_k]
results = [(idx, float(similarities[idx])) for idx in top_indices]
return results
def _fuse_multi_model_results(self, all_results: List[Tuple[int, float]]) -> List[Tuple[int, float]]:
"""融合多模型结果"""
doc_scores = {}
for doc_id, score in all_results:
if doc_id in doc_scores:
doc_scores[doc_id] += score
else:
doc_scores[doc_id] = score
# 排序并返回
fused_results = [(doc_id, score) for doc_id, score in doc_scores.items()]
fused_results.sort(key=lambda x: x[1], reverse=True)
return fused_results2. 跨语言模型融合
实现示例
python
class CrossLingualRetriever:
def __init__(self, chinese_model: SentenceTransformer,
multilingual_model: SentenceTransformer):
self.chinese_model = chinese_model
self.multilingual_model = multilingual_model
def retrieve(self, query: str, documents: List[str], top_k: int = 10) -> List[Tuple[int, float]]:
"""跨语言检索"""
# 检测查询语言
query_language = self._detect_language(query)
# 根据语言选择模型
if query_language == 'chinese':
primary_model = self.chinese_model
secondary_model = self.multilingual_model
primary_weight = 0.7
else:
primary_model = self.multilingual_model
secondary_model = self.chinese_model
primary_weight = 0.7
# 使用主要模型检索
primary_results = self._search_with_model(primary_model, query, documents, top_k * 2)
# 使用次要模型检索
secondary_results = self._search_with_model(secondary_model, query, documents, top_k * 2)
# 融合结果
fused_results = self._fuse_cross_lingual_results(
primary_results, secondary_results, primary_weight
)
return fused_results[:top_k]
def _detect_language(self, text: str) -> str:
"""检测文本语言"""
# 简单的语言检测逻辑
chinese_chars = sum(1 for char in text if '\u4e00' <= char <= '\u9fff')
total_chars = len(text)
if chinese_chars / total_chars > 0.3:
return 'chinese'
else:
return 'english'
def _fuse_cross_lingual_results(self, primary_results: List[Tuple[int, float]],
secondary_results: List[Tuple[int, float]],
primary_weight: float) -> List[Tuple[int, float]]:
"""融合跨语言结果"""
doc_scores = {}
# 添加主要模型分数
for doc_id, score in primary_results:
doc_scores[doc_id] = primary_weight * score
# 添加次要模型分数
secondary_weight = 1 - primary_weight
for doc_id, score in secondary_results:
if doc_id in doc_scores:
doc_scores[doc_id] += secondary_weight * score
else:
doc_scores[doc_id] = secondary_weight * score
# 排序并返回
fused_results = [(doc_id, score) for doc_id, score in doc_scores.items()]
fused_results.sort(key=lambda x: x[1], reverse=True)
return fused_results多阶段检索
1. 粗排 + 精排
实现原理
使用快速但精度较低的算法进行粗排,然后用精确但计算量大的算法对粗排结果进行精排。
实现示例
python
class TwoStageRetriever:
def __init__(self, coarse_model: SentenceTransformer,
fine_model: SentenceTransformer,
coarse_ratio: float = 0.1):
self.coarse_model = coarse_model
self.fine_model = fine_model
self.coarse_ratio = coarse_ratio # 粗排保留比例
def retrieve(self, query: str, documents: List[str], top_k: int = 10) -> List[Tuple[int, float]]:
"""两阶段检索"""
# 第一阶段:粗排
coarse_results = self._coarse_ranking(query, documents, top_k)
# 第二阶段:精排
fine_results = self._fine_ranking(query, documents, coarse_results, top_k)
return fine_results
def _coarse_ranking(self, query: str, documents: List[str], top_k: int) -> List[int]:
"""粗排阶段"""
# 使用快速模型进行粗排
query_embedding = self.coarse_model.encode([query])
document_embeddings = self.coarse_model.encode(documents)
# 计算相似度
similarities = np.dot(document_embeddings, query_embedding.T).flatten()
# 获取更多候选(粗排保留比例)
coarse_k = max(int(len(documents) * self.coarse_ratio), top_k * 3)
top_indices = np.argsort(similarities)[::-1][:coarse_k]
return top_indices.tolist()
def _fine_ranking(self, query: str, documents: List[str],
candidate_indices: List[int], top_k: int) -> List[Tuple[int, float]]:
"""精排阶段"""
# 只对候选文档使用精确模型
candidate_documents = [documents[i] for i in candidate_indices]
query_embedding = self.fine_model.encode([query])
candidate_embeddings = self.fine_model.encode(candidate_documents)
# 计算精确相似度
similarities = np.dot(candidate_embeddings, query_embedding.T).flatten()
# 获取top-k结果
top_indices = np.argsort(similarities)[::-1][:top_k]
results = [(candidate_indices[idx], float(similarities[idx])) for idx in top_indices]
return results2. 多轮检索
实现示例
python
class MultiRoundRetriever:
def __init__(self, models: List[SentenceTransformer]):
self.models = models
self.round_weights = [0.5, 0.3, 0.2] # 各轮权重
def retrieve(self, query: str, documents: List[str], top_k: int = 10) -> List[Tuple[int, float]]:
"""多轮检索"""
all_results = []
remaining_docs = set(range(len(documents)))
# 多轮检索
for round_idx, (model, weight) in enumerate(zip(self.models, self.round_weights)):
if not remaining_docs:
break
# 当前轮检索
round_results = self._search_round(model, query, documents, remaining_docs, top_k)
# 应用轮次权重
weighted_results = [(doc_id, score * weight) for doc_id, score in round_results]
all_results.extend(weighted_results)
# 更新剩余文档
retrieved_docs = {doc_id for doc_id, _ in round_results}
remaining_docs -= retrieved_docs
# 融合所有轮次的结果
fused_results = self._fuse_round_results(all_results)
return fused_results[:top_k]
def _search_round(self, model: SentenceTransformer, query: str,
documents: List[str], remaining_docs: Set[int],
top_k: int) -> List[Tuple[int, float]]:
"""单轮检索"""
# 只对剩余文档进行检索
remaining_documents = [documents[i] for i in remaining_docs]
query_embedding = model.encode([query])
document_embeddings = model.encode(remaining_documents)
# 计算相似度
similarities = np.dot(document_embeddings, query_embedding.T).flatten()
# 获取top-k结果
top_indices = np.argsort(similarities)[::-1][:top_k]
# 映射回原始文档ID
doc_id_mapping = list(remaining_docs)
results = [(doc_id_mapping[idx], float(similarities[idx])) for idx in top_indices]
return results
def _fuse_round_results(self, all_results: List[Tuple[int, float]]) -> List[Tuple[int, float]]:
"""融合多轮结果"""
doc_scores = {}
for doc_id, score in all_results:
if doc_id in doc_scores:
doc_scores[doc_id] += score
else:
doc_scores[doc_id] = score
# 排序并返回
fused_results = [(doc_id, score) for doc_id, score in doc_scores.items()]
fused_results.sort(key=lambda x: x[1], reverse=True)
return fused_results自适应检索
1. 查询类型自适应
实现示例
python
class AdaptiveRetriever:
def __init__(self, semantic_model: SentenceTransformer,
keyword_model, documents: List[str]):
self.semantic_model = semantic_model
self.keyword_model = keyword_model
self.documents = documents
# 查询类型分类器
self.query_classifier = self._build_query_classifier()
def retrieve(self, query: str, top_k: int = 10) -> List[Tuple[int, float]]:
"""自适应检索"""
# 分类查询类型
query_type = self._classify_query(query)
# 根据查询类型选择检索策略
if query_type == 'factual':
return self._factual_search(query, top_k)
elif query_type == 'semantic':
return self._semantic_search(query, top_k)
elif query_type == 'keyword':
return self._keyword_search(query, top_k)
else:
return self._hybrid_search(query, top_k)
def _classify_query(self, query: str) -> str:
"""分类查询类型"""
features = self._extract_query_features(query)
# 基于特征进行分类
if features['question_words'] > 0 and features['length'] < 20:
return 'factual'
elif features['technical_terms'] > 0:
return 'semantic'
elif features['exact_phrases'] > 0:
return 'keyword'
else:
return 'hybrid'
def _extract_query_features(self, query: str) -> Dict[str, int]:
"""提取查询特征"""
features = {}
# 问题词数量
question_words = ['什么', '如何', '为什么', '哪里', '什么时候', '谁']
features['question_words'] = sum(1 for word in question_words if word in query)
# 查询长度
features['length'] = len(query)
# 专业术语数量
technical_terms = ['算法', '机器学习', '深度学习', '人工智能']
features['technical_terms'] = sum(1 for term in technical_terms if term in query)
# 精确短语数量
features['exact_phrases'] = len(query.split('"')) - 1
return features
def _factual_search(self, query: str, top_k: int) -> List[Tuple[int, float]]:
"""事实性查询检索"""
# 使用关键词检索,注重精确匹配
return self._keyword_search(query, top_k)
def _semantic_search(self, query: str, top_k: int) -> List[Tuple[int, float]]:
"""语义查询检索"""
# 使用语义检索
query_embedding = self.semantic_model.encode([query])
document_embeddings = self.semantic_model.encode(self.documents)
similarities = np.dot(document_embeddings, query_embedding.T).flatten()
top_indices = np.argsort(similarities)[::-1][:top_k]
results = [(idx, float(similarities[idx])) for idx in top_indices]
return results
def _keyword_search(self, query: str, top_k: int) -> List[Tuple[int, float]]:
"""关键词检索"""
# 使用关键词模型进行检索
return self.keyword_model.search(query, top_k)
def _hybrid_search(self, query: str, top_k: int) -> List[Tuple[int, float]]:
"""混合检索"""
# 结合语义和关键词检索
semantic_results = self._semantic_search(query, top_k * 2)
keyword_results = self._keyword_search(query, top_k * 2)
# 融合结果
return self._fuse_results(semantic_results, keyword_results, 0.6, 0.4)2. 动态权重调整
实现示例
python
class DynamicWeightRetriever:
def __init__(self, models: List[object], initial_weights: List[float]):
self.models = models
self.weights = initial_weights
self.performance_history = {i: [] for i in range(len(models))}
def retrieve(self, query: str, top_k: int = 10) -> List[Tuple[int, float]]:
"""动态权重检索"""
# 使用当前权重进行检索
results = self._weighted_search(query, top_k)
# 更新权重(基于历史性能)
self._update_weights()
return results
def _weighted_search(self, query: str, top_k: int) -> List[Tuple[int, float]]:
"""加权搜索"""
all_results = []
for model, weight in zip(self.models, self.weights):
model_results = model.search(query, top_k * 2)
weighted_results = [(doc_id, score * weight) for doc_id, score in model_results]
all_results.extend(weighted_results)
# 融合结果
fused_results = self._fuse_results(all_results)
return fused_results[:top_k]
def _update_weights(self):
"""更新权重"""
# 基于历史性能调整权重
for i, history in self.performance_history.items():
if len(history) > 10:
# 计算平均性能
avg_performance = np.mean(history[-10:])
# 调整权重
if avg_performance > 0.8:
self.weights[i] *= 1.1
elif avg_performance < 0.5:
self.weights[i] *= 0.9
# 归一化权重
total_weight = sum(self.weights)
self.weights = [w / total_weight for w in self.weights]
def update_performance(self, model_id: int, performance: float):
"""更新模型性能"""
self.performance_history[model_id].append(performance)混合检索优化
1. 结果去重和排序
python
class ResultOptimizer:
def __init__(self):
self.optimization_strategies = []
def optimize_results(self, results: List[Tuple[int, float]],
strategy: str = 'default') -> List[Tuple[int, float]]:
"""优化检索结果"""
if strategy == 'default':
return self._default_optimization(results)
elif strategy == 'diversity':
return self._diversity_optimization(results)
elif strategy == 'relevance':
return self._relevance_optimization(results)
else:
return results
def _default_optimization(self, results: List[Tuple[int, float]]) -> List[Tuple[int, float]]:
"""默认优化"""
# 去重
unique_results = {}
for doc_id, score in results:
if doc_id not in unique_results or score > unique_results[doc_id]:
unique_results[doc_id] = score
# 排序
optimized_results = [(doc_id, score) for doc_id, score in unique_results.items()]
optimized_results.sort(key=lambda x: x[1], reverse=True)
return optimized_results
def _diversity_optimization(self, results: List[Tuple[int, float]]) -> List[Tuple[int, float]]:
"""多样性优化"""
# 实现多样性优化逻辑
pass
def _relevance_optimization(self, results: List[Tuple[int, float]]) -> List[Tuple[int, float]]:
"""相关性优化"""
# 实现相关性优化逻辑
pass2. 缓存优化
python
class HybridRetrievalCache:
def __init__(self, cache_size: int = 1000):
self.cache = {}
self.cache_size = cache_size
self.access_count = {}
def get_cached_result(self, query: str) -> List[Tuple[int, float]]:
"""获取缓存结果"""
query_hash = hash(query)
if query_hash in self.cache:
self.access_count[query_hash] = self.access_count.get(query_hash, 0) + 1
return self.cache[query_hash]
return None
def cache_result(self, query: str, results: List[Tuple[int, float]]):
"""缓存结果"""
query_hash = hash(query)
# 如果缓存已满,移除最少使用的项
if len(self.cache) >= self.cache_size:
least_used = min(self.access_count.items(), key=lambda x: x[1])
del self.cache[least_used[0]]
del self.access_count[least_used[0]]
self.cache[query_hash] = results
self.access_count[query_hash] = 1性能评估
1. 混合检索评估
python
class HybridRetrievalEvaluator:
def __init__(self, retriever, test_data: List[Dict]):
self.retriever = retriever
self.test_data = test_data
def evaluate_hybrid_retrieval(self) -> Dict[str, float]:
"""评估混合检索效果"""
metrics = {
'precision': [],
'recall': [],
'f1': [],
'map': [],
'ndcg': []
}
for test_case in self.test_data:
query = test_case['query']
relevant_docs = set(test_case['relevant_docs'])
# 执行检索
retrieved_docs = self.retriever.retrieve(query, top_k=10)
retrieved_ids = [doc_id for doc_id, _ in retrieved_docs]
# 计算指标
precision = self._calculate_precision(retrieved_ids, relevant_docs)
recall = self._calculate_recall(retrieved_ids, relevant_docs)
f1 = self._calculate_f1(precision, recall)
map_score = self._calculate_map(retrieved_ids, relevant_docs)
ndcg = self._calculate_ndcg(retrieved_ids, relevant_docs)
metrics['precision'].append(precision)
metrics['recall'].append(recall)
metrics['f1'].append(f1)
metrics['map'].append(map_score)
metrics['ndcg'].append(ndcg)
# 计算平均指标
avg_metrics = {key: np.mean(values) for key, values in metrics.items()}
return avg_metrics最佳实践
1. 混合策略选择
python
def select_hybrid_strategy(requirements: dict) -> str:
"""选择混合策略"""
if requirements['accuracy'] == 'high' and requirements['speed'] == 'medium':
return 'semantic_keyword_hybrid'
elif requirements['robustness'] == 'high':
return 'multi_model_fusion'
elif requirements['efficiency'] == 'high':
return 'two_stage_retrieval'
else:
return 'adaptive_retrieval'2. 参数调优
python
class HybridRetrievalOptimizer:
def __init__(self, retriever):
self.retriever = retriever
def optimize_hybrid_parameters(self, test_data: List[Dict]) -> Dict:
"""优化混合检索参数"""
best_params = None
best_score = 0
# 测试不同的参数组合
param_combinations = self._generate_param_combinations()
for params in param_combinations:
# 设置参数
self.retriever.set_parameters(params)
# 评估性能
score = self._evaluate_performance(test_data)
if score > best_score:
best_score = score
best_params = params
return best_params总结
混合检索策略通过结合多种检索方法的优势,能够显著提升RAG系统的检索效果。本文介绍了语义+关键词混合、多模型融合、多阶段检索和自适应检索等多种策略。
关键要点:
- 策略选择:根据应用需求选择合适的混合策略
- 权重调优:通过实验找到最优的权重配置
- 性能优化:使用缓存、去重等技术提升性能
- 效果评估:建立完善的评估体系
在下一篇文章中,我们将探讨重排序技术,了解如何通过重排序进一步提升检索效果。
下一步学习建议:
- 阅读《重排序技术》,了解如何通过重排序优化检索结果
- 实践不同的混合检索策略,比较它们的效果
- 关注混合检索技术的最新发展和优化方案
