监控与运维
引言
RAG系统的监控与运维是确保系统稳定运行、快速定位问题和持续优化性能的关键。随着RAG系统复杂度的增加,建立完善的监控和运维体系变得越来越重要。本文将深入探讨RAG系统的监控策略、运维实践、故障处理和性能调优等方面。
监控与运维概述
什么是RAG系统监控与运维
RAG系统监控与运维是指通过技术手段对RAG系统进行实时监控、性能分析、故障诊断和系统维护,确保系统稳定、高效运行的过程。
监控与运维的目标
监控与运维的挑战
- 系统复杂性:多组件、多服务的监控
- 数据量庞大:大量日志和指标数据
- 实时性要求:需要实时监控和告警
- 故障多样性:各种类型的故障和异常
- 运维自动化:减少人工干预,提高效率
监控体系设计
1. 监控架构
监控层次
实现示例
python
class RAGMonitoringSystem:
def __init__(self):
self.metrics_collector = MetricsCollector()
self.log_collector = LogCollector()
self.alert_manager = AlertManager()
self.dashboard = Dashboard()
self.health_checker = HealthChecker()
# 监控组件
self.monitors = {
'application': ApplicationMonitor(),
'service': ServiceMonitor(),
'infrastructure': InfrastructureMonitor(),
'business': BusinessMonitor()
}
def start_monitoring(self):
"""启动监控"""
# 启动各个监控组件
for monitor_name, monitor in self.monitors.items():
monitor.start()
# 启动指标收集
self.metrics_collector.start()
# 启动日志收集
self.log_collector.start()
# 启动健康检查
self.health_checker.start()
# 启动告警管理
self.alert_manager.start()
def stop_monitoring(self):
"""停止监控"""
# 停止各个监控组件
for monitor_name, monitor in self.monitors.items():
monitor.stop()
# 停止指标收集
self.metrics_collector.stop()
# 停止日志收集
self.log_collector.stop()
# 停止健康检查
self.health_checker.stop()
# 停止告警管理
self.alert_manager.stop()
class MetricsCollector:
def __init__(self):
self.metrics_store = MetricsStore()
self.collectors = {
'system': SystemMetricsCollector(),
'application': ApplicationMetricsCollector(),
'business': BusinessMetricsCollector()
}
self.collection_interval = 30 # 30秒收集一次
self.running = False
def start(self):
"""启动指标收集"""
self.running = True
threading.Thread(target=self._collection_loop, daemon=True).start()
def stop(self):
"""停止指标收集"""
self.running = False
def _collection_loop(self):
"""指标收集循环"""
while self.running:
try:
# 收集各类指标
for collector_name, collector in self.collectors.items():
metrics = collector.collect_metrics()
self.metrics_store.store_metrics(collector_name, metrics)
time.sleep(self.collection_interval)
except Exception as e:
print(f"指标收集失败: {e}")
time.sleep(5)
def get_metrics(self, metric_type: str, time_range: str = '1h') -> Dict[str, any]:
"""获取指标"""
return self.metrics_store.get_metrics(metric_type, time_range)
class SystemMetricsCollector:
def __init__(self):
self.psutil = __import__('psutil')
def collect_metrics(self) -> Dict[str, any]:
"""收集系统指标"""
return {
'cpu_usage': self.psutil.cpu_percent(),
'memory_usage': self.psutil.virtual_memory().percent,
'disk_usage': self.psutil.disk_usage('/').percent,
'network_io': self.psutil.net_io_counters()._asdict(),
'process_count': len(self.psutil.pids()),
'load_average': self.psutil.getloadavg() if hasattr(self.psutil, 'getloadavg') else [0, 0, 0]
}
class ApplicationMetricsCollector:
def __init__(self):
self.request_count = 0
self.error_count = 0
self.response_times = []
self.active_connections = 0
def collect_metrics(self) -> Dict[str, any]:
"""收集应用指标"""
avg_response_time = sum(self.response_times) / len(self.response_times) if self.response_times else 0
return {
'request_count': self.request_count,
'error_count': self.error_count,
'error_rate': self.error_count / max(self.request_count, 1),
'avg_response_time': avg_response_time,
'active_connections': self.active_connections,
'throughput': self.request_count / 60 # 每分钟请求数
}
def record_request(self, response_time: float, is_error: bool = False):
"""记录请求"""
self.request_count += 1
if is_error:
self.error_count += 1
self.response_times.append(response_time)
if len(self.response_times) > 1000: # 保持最近1000个请求的响应时间
self.response_times.pop(0)
class BusinessMetricsCollector:
def __init__(self):
self.query_count = 0
self.successful_queries = 0
self.user_count = 0
self.document_count = 0
def collect_metrics(self) -> Dict[str, any]:
"""收集业务指标"""
return {
'query_count': self.query_count,
'successful_queries': self.successful_queries,
'query_success_rate': self.successful_queries / max(self.query_count, 1),
'user_count': self.user_count,
'document_count': self.document_count,
'avg_queries_per_user': self.query_count / max(self.user_count, 1)
}
def record_query(self, user_id: str, success: bool):
"""记录查询"""
self.query_count += 1
if success:
self.successful_queries += 1
class LogCollector:
def __init__(self):
self.log_store = LogStore()
self.log_processors = {
'error': ErrorLogProcessor(),
'access': AccessLogProcessor(),
'performance': PerformanceLogProcessor()
}
self.collection_interval = 10 # 10秒收集一次
self.running = False
def start(self):
"""启动日志收集"""
self.running = True
threading.Thread(target=self._collection_loop, daemon=True).start()
def stop(self):
"""停止日志收集"""
self.running = False
def _collection_loop(self):
"""日志收集循环"""
while self.running:
try:
# 收集各类日志
for log_type, processor in self.log_processors.items():
logs = processor.collect_logs()
self.log_store.store_logs(log_type, logs)
time.sleep(self.collection_interval)
except Exception as e:
print(f"日志收集失败: {e}")
time.sleep(5)
def get_logs(self, log_type: str, time_range: str = '1h') -> List[Dict[str, any]]:
"""获取日志"""
return self.log_store.get_logs(log_type, time_range)
class ErrorLogProcessor:
def __init__(self):
self.error_logs = []
def collect_logs(self) -> List[Dict[str, any]]:
"""收集错误日志"""
logs = self.error_logs.copy()
self.error_logs.clear()
return logs
def log_error(self, error: str, context: Dict[str, any] = None):
"""记录错误日志"""
log_entry = {
'timestamp': time.time(),
'level': 'ERROR',
'message': error,
'context': context or {}
}
self.error_logs.append(log_entry)
class AccessLogProcessor:
def __init__(self):
self.access_logs = []
def collect_logs(self) -> List[Dict[str, any]]:
"""收集访问日志"""
logs = self.access_logs.copy()
self.access_logs.clear()
return logs
def log_access(self, request: Dict[str, any], response: Dict[str, any]):
"""记录访问日志"""
log_entry = {
'timestamp': time.time(),
'method': request.get('method', 'GET'),
'url': request.get('url', ''),
'status_code': response.get('status_code', 200),
'response_time': response.get('response_time', 0),
'user_id': request.get('user_id', ''),
'ip_address': request.get('ip_address', '')
}
self.access_logs.append(log_entry)
class PerformanceLogProcessor:
def __init__(self):
self.performance_logs = []
def collect_logs(self) -> List[Dict[str, any]]:
"""收集性能日志"""
logs = self.performance_logs.copy()
self.performance_logs.clear()
return logs
def log_performance(self, operation: str, duration: float, details: Dict[str, any] = None):
"""记录性能日志"""
log_entry = {
'timestamp': time.time(),
'operation': operation,
'duration': duration,
'details': details or {}
}
self.performance_logs.append(log_entry)2. 指标监控
关键指标
python
class KeyMetricsMonitor:
def __init__(self):
self.metrics_definitions = {
'availability': {
'name': '系统可用性',
'description': '系统正常运行时间百分比',
'calculation': 'uptime / total_time',
'threshold': 0.99,
'unit': 'percentage'
},
'response_time': {
'name': '响应时间',
'description': '平均响应时间',
'calculation': 'sum(response_times) / count',
'threshold': 2.0,
'unit': 'seconds'
},
'throughput': {
'name': '吞吐量',
'description': '每秒处理的请求数',
'calculation': 'requests / time_interval',
'threshold': 100,
'unit': 'requests_per_second'
},
'error_rate': {
'name': '错误率',
'description': '错误请求占总请求的百分比',
'calculation': 'error_requests / total_requests',
'threshold': 0.01,
'unit': 'percentage'
},
'cpu_usage': {
'name': 'CPU使用率',
'description': 'CPU使用百分比',
'calculation': 'cpu_time / total_time',
'threshold': 0.8,
'unit': 'percentage'
},
'memory_usage': {
'name': '内存使用率',
'description': '内存使用百分比',
'calculation': 'used_memory / total_memory',
'threshold': 0.85,
'unit': 'percentage'
},
'disk_usage': {
'name': '磁盘使用率',
'description': '磁盘使用百分比',
'calculation': 'used_disk / total_disk',
'threshold': 0.9,
'unit': 'percentage'
}
}
self.metrics_collectors = {
'availability': AvailabilityCollector(),
'response_time': ResponseTimeCollector(),
'throughput': ThroughputCollector(),
'error_rate': ErrorRateCollector(),
'cpu_usage': CPUUsageCollector(),
'memory_usage': MemoryUsageCollector(),
'disk_usage': DiskUsageCollector()
}
def collect_all_metrics(self) -> Dict[str, any]:
"""收集所有指标"""
metrics = {}
for metric_name, collector in self.metrics_collectors.items():
try:
value = collector.collect()
metrics[metric_name] = {
'value': value,
'definition': self.metrics_definitions[metric_name],
'status': self._evaluate_status(metric_name, value)
}
except Exception as e:
print(f"收集指标 {metric_name} 失败: {e}")
metrics[metric_name] = {
'value': None,
'definition': self.metrics_definitions[metric_name],
'status': 'error'
}
return metrics
def _evaluate_status(self, metric_name: str, value: float) -> str:
"""评估指标状态"""
if value is None:
return 'unknown'
threshold = self.metrics_definitions[metric_name]['threshold']
if value <= threshold:
return 'healthy'
elif value <= threshold * 1.2:
return 'warning'
else:
return 'critical'
class AvailabilityCollector:
def __init__(self):
self.start_time = time.time()
self.downtime = 0
self.last_check_time = time.time()
def collect(self) -> float:
"""收集可用性指标"""
current_time = time.time()
total_time = current_time - self.start_time
uptime = total_time - self.downtime
return uptime / total_time if total_time > 0 else 1.0
def record_downtime(self, duration: float):
"""记录停机时间"""
self.downtime += duration
class ResponseTimeCollector:
def __init__(self):
self.response_times = []
self.max_samples = 1000
def collect(self) -> float:
"""收集响应时间指标"""
if not self.response_times:
return 0.0
return sum(self.response_times) / len(self.response_times)
def record_response_time(self, response_time: float):
"""记录响应时间"""
self.response_times.append(response_time)
if len(self.response_times) > self.max_samples:
self.response_times.pop(0)
class ThroughputCollector:
def __init__(self):
self.request_count = 0
self.start_time = time.time()
self.last_reset_time = time.time()
def collect(self) -> float:
"""收集吞吐量指标"""
current_time = time.time()
time_interval = current_time - self.last_reset_time
if time_interval > 0:
throughput = self.request_count / time_interval
self.request_count = 0
self.last_reset_time = current_time
return throughput
return 0.0
def record_request(self):
"""记录请求"""
self.request_count += 1
class ErrorRateCollector:
def __init__(self):
self.total_requests = 0
self.error_requests = 0
self.last_reset_time = time.time()
def collect(self) -> float:
"""收集错误率指标"""
if self.total_requests > 0:
error_rate = self.error_requests / self.total_requests
self.total_requests = 0
self.error_requests = 0
return error_rate
return 0.0
def record_request(self, is_error: bool = False):
"""记录请求"""
self.total_requests += 1
if is_error:
self.error_requests += 1
class CPUUsageCollector:
def __init__(self):
self.psutil = __import__('psutil')
def collect(self) -> float:
"""收集CPU使用率"""
return self.psutil.cpu_percent() / 100.0
class MemoryUsageCollector:
def __init__(self):
self.psutil = __import__('psutil')
def collect(self) -> float:
"""收集内存使用率"""
return self.psutil.virtual_memory().percent / 100.0
class DiskUsageCollector:
def __init__(self):
self.psutil = __import__('psutil')
def collect(self) -> float:
"""收集磁盘使用率"""
return self.psutil.disk_usage('/').percent / 100.03. 告警系统
告警管理
python
class AlertManager:
def __init__(self):
self.alert_rules = {}
self.alert_channels = {}
self.alert_history = []
self.alert_cooldown = {} # 告警冷却时间
self.running = False
def start(self):
"""启动告警管理"""
self.running = True
threading.Thread(target=self._monitoring_loop, daemon=True).start()
def stop(self):
"""停止告警管理"""
self.running = False
def add_alert_rule(self, rule_name: str, rule: Dict[str, any]):
"""添加告警规则"""
self.alert_rules[rule_name] = rule
def add_alert_channel(self, channel_name: str, channel):
"""添加告警渠道"""
self.alert_channels[channel_name] = channel
def _monitoring_loop(self):
"""监控循环"""
while self.running:
try:
# 检查所有告警规则
for rule_name, rule in self.alert_rules.items():
if self._check_alert_rule(rule_name, rule):
self._trigger_alert(rule_name, rule)
time.sleep(30) # 30秒检查一次
except Exception as e:
print(f"告警监控失败: {e}")
time.sleep(5)
def _check_alert_rule(self, rule_name: str, rule: Dict[str, any]) -> bool:
"""检查告警规则"""
try:
# 获取指标值
metric_value = self._get_metric_value(rule['metric'])
# 检查条件
condition = rule['condition']
threshold = rule['threshold']
if condition == 'greater_than':
return metric_value > threshold
elif condition == 'less_than':
return metric_value < threshold
elif condition == 'equals':
return metric_value == threshold
elif condition == 'not_equals':
return metric_value != threshold
else:
return False
except Exception as e:
print(f"检查告警规则 {rule_name} 失败: {e}")
return False
def _get_metric_value(self, metric_name: str) -> float:
"""获取指标值"""
# 这里应该从指标收集器获取实际值
# 简化实现,返回模拟值
return 0.0
def _trigger_alert(self, rule_name: str, rule: Dict[str, any]):
"""触发告警"""
# 检查冷却时间
if rule_name in self.alert_cooldown:
if time.time() - self.alert_cooldown[rule_name] < rule.get('cooldown', 300):
return
# 创建告警
alert = {
'rule_name': rule_name,
'message': rule['message'],
'severity': rule.get('severity', 'warning'),
'timestamp': time.time(),
'metric_value': self._get_metric_value(rule['metric'])
}
# 发送告警
self._send_alert(alert)
# 记录告警历史
self.alert_history.append(alert)
# 设置冷却时间
self.alert_cooldown[rule_name] = time.time()
def _send_alert(self, alert: Dict[str, any]):
"""发送告警"""
for channel_name, channel in self.alert_channels.items():
try:
channel.send_alert(alert)
except Exception as e:
print(f"发送告警到 {channel_name} 失败: {e}")
def get_alert_history(self, time_range: str = '24h') -> List[Dict[str, any]]:
"""获取告警历史"""
current_time = time.time()
time_range_seconds = self._parse_time_range(time_range)
return [alert for alert in self.alert_history
if current_time - alert['timestamp'] <= time_range_seconds]
def _parse_time_range(self, time_range: str) -> int:
"""解析时间范围"""
if time_range.endswith('h'):
return int(time_range[:-1]) * 3600
elif time_range.endswith('d'):
return int(time_range[:-1]) * 86400
else:
return 3600 # 默认1小时
class EmailAlertChannel:
def __init__(self, smtp_server: str, smtp_port: int, username: str, password: str):
self.smtp_server = smtp_server
self.smtp_port = smtp_port
self.username = username
self.password = password
self.recipients = []
def add_recipient(self, email: str):
"""添加收件人"""
self.recipients.append(email)
def send_alert(self, alert: Dict[str, any]):
"""发送邮件告警"""
import smtplib
from email.mime.text import MIMEText
from email.mime.multipart import MIMEMultipart
try:
# 创建邮件
msg = MIMEMultipart()
msg['From'] = self.username
msg['To'] = ', '.join(self.recipients)
msg['Subject'] = f"RAG系统告警 - {alert['severity'].upper()}"
# 邮件内容
body = f"""
告警规则: {alert['rule_name']}
告警级别: {alert['severity']}
告警时间: {time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(alert['timestamp']))}
告警信息: {alert['message']}
指标值: {alert['metric_value']}
"""
msg.attach(MIMEText(body, 'plain'))
# 发送邮件
server = smtplib.SMTP(self.smtp_server, self.smtp_port)
server.starttls()
server.login(self.username, self.password)
server.send_message(msg)
server.quit()
except Exception as e:
print(f"发送邮件告警失败: {e}")
class SlackAlertChannel:
def __init__(self, webhook_url: str):
self.webhook_url = webhook_url
def send_alert(self, alert: Dict[str, any]):
"""发送Slack告警"""
import requests
try:
# 构建消息
message = {
'text': f"RAG系统告警 - {alert['severity'].upper()}",
'attachments': [
{
'color': self._get_color(alert['severity']),
'fields': [
{'title': '告警规则', 'value': alert['rule_name'], 'short': True},
{'title': '告警级别', 'value': alert['severity'], 'short': True},
{'title': '告警时间', 'value': time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(alert['timestamp'])), 'short': True},
{'title': '告警信息', 'value': alert['message'], 'short': False},
{'title': '指标值', 'value': str(alert['metric_value']), 'short': True}
]
}
]
}
# 发送消息
response = requests.post(self.webhook_url, json=message)
response.raise_for_status()
except Exception as e:
print(f"发送Slack告警失败: {e}")
def _get_color(self, severity: str) -> str:
"""获取颜色"""
colors = {
'critical': 'danger',
'warning': 'warning',
'info': 'good'
}
return colors.get(severity, 'good')
class WebhookAlertChannel:
def __init__(self, webhook_url: str):
self.webhook_url = webhook_url
def send_alert(self, alert: Dict[str, any]):
"""发送Webhook告警"""
import requests
try:
# 发送告警数据
response = requests.post(self.webhook_url, json=alert)
response.raise_for_status()
except Exception as e:
print(f"发送Webhook告警失败: {e}")健康检查
1. 服务健康检查
健康检查实现
python
class HealthChecker:
def __init__(self):
self.health_checks = {
'database': DatabaseHealthCheck(),
'redis': RedisHealthCheck(),
'vector_db': VectorDBHealthCheck(),
'llm_service': LLMServiceHealthCheck(),
'document_service': DocumentServiceHealthCheck(),
'retrieval_service': RetrievalServiceHealthCheck(),
'generation_service': GenerationServiceHealthCheck()
}
self.check_interval = 60 # 60秒检查一次
self.running = False
def start(self):
"""启动健康检查"""
self.running = True
threading.Thread(target=self._check_loop, daemon=True).start()
def stop(self):
"""停止健康检查"""
self.running = False
def _check_loop(self):
"""健康检查循环"""
while self.running:
try:
# 执行所有健康检查
for check_name, check in self.health_checks.items():
try:
result = check.check()
self._handle_health_result(check_name, result)
except Exception as e:
print(f"健康检查 {check_name} 失败: {e}")
self._handle_health_result(check_name, {
'status': 'unhealthy',
'error': str(e)
})
time.sleep(self.check_interval)
except Exception as e:
print(f"健康检查循环失败: {e}")
time.sleep(5)
def _handle_health_result(self, check_name: str, result: Dict[str, any]):
"""处理健康检查结果"""
# 记录健康状态
self._record_health_status(check_name, result)
# 如果状态不健康,触发告警
if result['status'] == 'unhealthy':
self._trigger_health_alert(check_name, result)
def _record_health_status(self, check_name: str, result: Dict[str, any]):
"""记录健康状态"""
# 这里应该将健康状态存储到数据库或缓存中
pass
def _trigger_health_alert(self, check_name: str, result: Dict[str, any]):
"""触发健康告警"""
# 这里应该触发告警
pass
def get_health_status(self) -> Dict[str, any]:
"""获取健康状态"""
status = {}
for check_name, check in self.health_checks.items():
try:
result = check.check()
status[check_name] = result
except Exception as e:
status[check_name] = {
'status': 'unhealthy',
'error': str(e)
}
return status
def get_overall_health(self) -> str:
"""获取整体健康状态"""
status = self.get_health_status()
unhealthy_count = sum(1 for s in status.values() if s['status'] == 'unhealthy')
total_count = len(status)
if unhealthy_count == 0:
return 'healthy'
elif unhealthy_count <= total_count // 2:
return 'degraded'
else:
return 'unhealthy'
class DatabaseHealthCheck:
def __init__(self):
self.db_client = DatabaseClient()
def check(self) -> Dict[str, any]:
"""检查数据库健康状态"""
try:
# 执行简单查询
start_time = time.time()
result = self.db_client.execute_query("SELECT 1")
response_time = time.time() - start_time
if result:
return {
'status': 'healthy',
'response_time': response_time,
'details': 'Database connection successful'
}
else:
return {
'status': 'unhealthy',
'error': 'Database query failed'
}
except Exception as e:
return {
'status': 'unhealthy',
'error': str(e)
}
class RedisHealthCheck:
def __init__(self):
self.redis_client = RedisClient()
def check(self) -> Dict[str, any]:
"""检查Redis健康状态"""
try:
# 执行ping命令
start_time = time.time()
result = self.redis_client.ping()
response_time = time.time() - start_time
if result:
return {
'status': 'healthy',
'response_time': response_time,
'details': 'Redis connection successful'
}
else:
return {
'status': 'unhealthy',
'error': 'Redis ping failed'
}
except Exception as e:
return {
'status': 'unhealthy',
'error': str(e)
}
class VectorDBHealthCheck:
def __init__(self):
self.vector_db_client = VectorDBClient()
def check(self) -> Dict[str, any]:
"""检查向量数据库健康状态"""
try:
# 执行健康检查查询
start_time = time.time()
result = self.vector_db_client.health_check()
response_time = time.time() - start_time
if result['status'] == 'ok':
return {
'status': 'healthy',
'response_time': response_time,
'details': 'Vector database connection successful'
}
else:
return {
'status': 'unhealthy',
'error': result.get('error', 'Vector database health check failed')
}
except Exception as e:
return {
'status': 'unhealthy',
'error': str(e)
}
class LLMServiceHealthCheck:
def __init__(self):
self.llm_client = LLMClient()
def check(self) -> Dict[str, any]:
"""检查LLM服务健康状态"""
try:
# 执行简单生成测试
start_time = time.time()
result = self.llm_client.generate("Hello", max_tokens=10)
response_time = time.time() - start_time
if result and result.get('text'):
return {
'status': 'healthy',
'response_time': response_time,
'details': 'LLM service connection successful'
}
else:
return {
'status': 'unhealthy',
'error': 'LLM service generation failed'
}
except Exception as e:
return {
'status': 'unhealthy',
'error': str(e)
}
class DocumentServiceHealthCheck:
def __init__(self):
self.document_client = DocumentServiceClient()
def check(self) -> Dict[str, any]:
"""检查文档服务健康状态"""
try:
# 执行健康检查
start_time = time.time()
result = self.document_client.health_check()
response_time = time.time() - start_time
if result['status'] == 'healthy':
return {
'status': 'healthy',
'response_time': response_time,
'details': 'Document service connection successful'
}
else:
return {
'status': 'unhealthy',
'error': result.get('error', 'Document service health check failed')
}
except Exception as e:
return {
'status': 'unhealthy',
'error': str(e)
}
class RetrievalServiceHealthCheck:
def __init__(self):
self.retrieval_client = RetrievalServiceClient()
def check(self) -> Dict[str, any]:
"""检查检索服务健康状态"""
try:
# 执行健康检查
start_time = time.time()
result = self.retrieval_client.health_check()
response_time = time.time() - start_time
if result['status'] == 'healthy':
return {
'status': 'healthy',
'response_time': response_time,
'details': 'Retrieval service connection successful'
}
else:
return {
'status': 'unhealthy',
'error': result.get('error', 'Retrieval service health check failed')
}
except Exception as e:
return {
'status': 'unhealthy',
'error': str(e)
}
class GenerationServiceHealthCheck:
def __init__(self):
self.generation_client = GenerationServiceClient()
def check(self) -> Dict[str, any]:
"""检查生成服务健康状态"""
try:
# 执行健康检查
start_time = time.time()
result = self.generation_client.health_check()
response_time = time.time() - start_time
if result['status'] == 'healthy':
return {
'status': 'healthy',
'response_time': response_time,
'details': 'Generation service connection successful'
}
else:
return {
'status': 'unhealthy',
'error': result.get('error', 'Generation service health check failed')
}
except Exception as e:
return {
'status': 'unhealthy',
'error': str(e)
}2. 依赖检查
依赖监控
python
class DependencyMonitor:
def __init__(self):
self.dependencies = {
'database': DatabaseDependency(),
'redis': RedisDependency(),
'vector_db': VectorDBDependency(),
'llm_service': LLMServiceDependency(),
'external_apis': ExternalAPIsDependency()
}
self.dependency_graph = self._build_dependency_graph()
def _build_dependency_graph(self) -> Dict[str, List[str]]:
"""构建依赖图"""
return {
'document_service': ['database', 'redis'],
'vector_service': ['vector_db', 'redis'],
'retrieval_service': ['vector_service', 'document_service'],
'generation_service': ['llm_service', 'retrieval_service'],
'api_gateway': ['generation_service', 'retrieval_service']
}
def check_dependencies(self, service_name: str) -> Dict[str, any]:
"""检查服务依赖"""
dependencies = self.dependency_graph.get(service_name, [])
results = {}
for dep_name in dependencies:
if dep_name in self.dependencies:
dep = self.dependencies[dep_name]
try:
result = dep.check()
results[dep_name] = result
except Exception as e:
results[dep_name] = {
'status': 'unhealthy',
'error': str(e)
}
return results
def get_dependency_status(self, service_name: str) -> str:
"""获取依赖状态"""
results = self.check_dependencies(service_name)
if not results:
return 'no_dependencies'
unhealthy_count = sum(1 for r in results.values() if r['status'] == 'unhealthy')
if unhealthy_count == 0:
return 'healthy'
elif unhealthy_count < len(results):
return 'degraded'
else:
return 'unhealthy'
class DatabaseDependency:
def __init__(self):
self.db_client = DatabaseClient()
def check(self) -> Dict[str, any]:
"""检查数据库依赖"""
try:
start_time = time.time()
result = self.db_client.execute_query("SELECT 1")
response_time = time.time() - start_time
return {
'status': 'healthy',
'response_time': response_time,
'details': 'Database connection successful'
}
except Exception as e:
return {
'status': 'unhealthy',
'error': str(e)
}
class RedisDependency:
def __init__(self):
self.redis_client = RedisClient()
def check(self) -> Dict[str, any]:
"""检查Redis依赖"""
try:
start_time = time.time()
result = self.redis_client.ping()
response_time = time.time() - start_time
return {
'status': 'healthy',
'response_time': response_time,
'details': 'Redis connection successful'
}
except Exception as e:
return {
'status': 'unhealthy',
'error': str(e)
}
class VectorDBDependency:
def __init__(self):
self.vector_db_client = VectorDBClient()
def check(self) -> Dict[str, any]:
"""检查向量数据库依赖"""
try:
start_time = time.time()
result = self.vector_db_client.health_check()
response_time = time.time() - start_time
return {
'status': 'healthy',
'response_time': response_time,
'details': 'Vector database connection successful'
}
except Exception as e:
return {
'status': 'unhealthy',
'error': str(e)
}
class LLMServiceDependency:
def __init__(self):
self.llm_client = LLMClient()
def check(self) -> Dict[str, any]:
"""检查LLM服务依赖"""
try:
start_time = time.time()
result = self.llm_client.health_check()
response_time = time.time() - start_time
return {
'status': 'healthy',
'response_time': response_time,
'details': 'LLM service connection successful'
}
except Exception as e:
return {
'status': 'unhealthy',
'error': str(e)
}
class ExternalAPIsDependency:
def __init__(self):
self.api_clients = {
'embedding_api': EmbeddingAPIClient(),
'translation_api': TranslationAPIClient(),
'summarization_api': SummarizationAPIClient()
}
def check(self) -> Dict[str, any]:
"""检查外部API依赖"""
results = {}
for api_name, client in self.api_clients.items():
try:
start_time = time.time()
result = client.health_check()
response_time = time.time() - start_time
results[api_name] = {
'status': 'healthy',
'response_time': response_time,
'details': f'{api_name} connection successful'
}
except Exception as e:
results[api_name] = {
'status': 'unhealthy',
'error': str(e)
}
# 计算整体状态
unhealthy_count = sum(1 for r in results.values() if r['status'] == 'unhealthy')
total_count = len(results)
if unhealthy_count == 0:
overall_status = 'healthy'
elif unhealthy_count < total_count:
overall_status = 'degraded'
else:
overall_status = 'unhealthy'
return {
'status': overall_status,
'details': results
}故障处理
1. 故障诊断
故障分析
python
class FaultDiagnosticSystem:
def __init__(self):
self.diagnostic_rules = {
'high_response_time': HighResponseTimeRule(),
'high_error_rate': HighErrorRateRule(),
'memory_leak': MemoryLeakRule(),
'database_connection': DatabaseConnectionRule(),
'service_unavailable': ServiceUnavailableRule()
}
self.fault_history = []
self.diagnostic_cache = {}
def diagnose_fault(self, symptoms: Dict[str, any]) -> Dict[str, any]:
"""诊断故障"""
# 检查缓存
cache_key = self._generate_cache_key(symptoms)
if cache_key in self.diagnostic_cache:
return self.diagnostic_cache[cache_key]
# 执行诊断
diagnosis = self._perform_diagnosis(symptoms)
# 缓存结果
self.diagnostic_cache[cache_key] = diagnosis
# 记录诊断历史
self.fault_history.append({
'timestamp': time.time(),
'symptoms': symptoms,
'diagnosis': diagnosis
})
return diagnosis
def _perform_diagnosis(self, symptoms: Dict[str, any]) -> Dict[str, any]:
"""执行诊断"""
possible_causes = []
confidence_scores = {}
# 应用诊断规则
for rule_name, rule in self.diagnostic_rules.items():
try:
result = rule.analyze(symptoms)
if result['matches']:
possible_causes.append(result['cause'])
confidence_scores[result['cause']] = result['confidence']
except Exception as e:
print(f"诊断规则 {rule_name} 执行失败: {e}")
# 排序可能原因
sorted_causes = sorted(possible_causes,
key=lambda x: confidence_scores.get(x, 0),
reverse=True)
# 生成诊断结果
diagnosis = {
'primary_cause': sorted_causes[0] if sorted_causes else 'unknown',
'possible_causes': sorted_causes,
'confidence_scores': confidence_scores,
'recommended_actions': self._get_recommended_actions(sorted_causes),
'diagnosis_time': time.time()
}
return diagnosis
def _generate_cache_key(self, symptoms: Dict[str, any]) -> str:
"""生成缓存键"""
import hashlib
content = json.dumps(symptoms, sort_keys=True)
return hashlib.md5(content.encode()).hexdigest()
def _get_recommended_actions(self, causes: List[str]) -> List[str]:
"""获取推荐操作"""
actions = []
for cause in causes:
if cause == 'high_response_time':
actions.extend([
'检查系统负载',
'优化数据库查询',
'增加缓存',
'检查网络延迟'
])
elif cause == 'high_error_rate':
actions.extend([
'检查错误日志',
'验证输入数据',
'检查服务依赖',
'重启相关服务'
])
elif cause == 'memory_leak':
actions.extend([
'检查内存使用情况',
'重启应用程序',
'检查代码中的内存泄漏',
'增加内存限制'
])
elif cause == 'database_connection':
actions.extend([
'检查数据库连接池',
'验证数据库服务状态',
'检查网络连接',
'重启数据库服务'
])
elif cause == 'service_unavailable':
actions.extend([
'检查服务状态',
'重启服务',
'检查服务配置',
'检查依赖服务'
])
return list(set(actions)) # 去重
def get_fault_history(self, time_range: str = '24h') -> List[Dict[str, any]]:
"""获取故障历史"""
current_time = time.time()
time_range_seconds = self._parse_time_range(time_range)
return [fault for fault in self.fault_history
if current_time - fault['timestamp'] <= time_range_seconds]
def _parse_time_range(self, time_range: str) -> int:
"""解析时间范围"""
if time_range.endswith('h'):
return int(time_range[:-1]) * 3600
elif time_range.endswith('d'):
return int(time_range[:-1]) * 86400
else:
return 3600 # 默认1小时
class HighResponseTimeRule:
def analyze(self, symptoms: Dict[str, any]) -> Dict[str, any]:
"""分析高响应时间"""
response_time = symptoms.get('response_time', 0)
if response_time > 5.0:
return {
'matches': True,
'cause': 'high_response_time',
'confidence': min(response_time / 10.0, 1.0)
}
return {'matches': False}
class HighErrorRateRule:
def analyze(self, symptoms: Dict[str, any]) -> Dict[str, any]:
"""分析高错误率"""
error_rate = symptoms.get('error_rate', 0)
if error_rate > 0.05: # 5%错误率
return {
'matches': True,
'cause': 'high_error_rate',
'confidence': min(error_rate * 10, 1.0)
}
return {'matches': False}
class MemoryLeakRule:
def analyze(self, symptoms: Dict[str, any]) -> Dict[str, any]:
"""分析内存泄漏"""
memory_usage = symptoms.get('memory_usage', 0)
memory_trend = symptoms.get('memory_trend', 0)
if memory_usage > 0.9 and memory_trend > 0.1: # 内存使用率90%且持续增长
return {
'matches': True,
'cause': 'memory_leak',
'confidence': min(memory_usage + memory_trend, 1.0)
}
return {'matches': False}
class DatabaseConnectionRule:
def analyze(self, symptoms: Dict[str, any]) -> Dict[str, any]:
"""分析数据库连接问题"""
db_errors = symptoms.get('database_errors', 0)
connection_pool = symptoms.get('connection_pool_usage', 0)
if db_errors > 10 or connection_pool > 0.95:
return {
'matches': True,
'cause': 'database_connection',
'confidence': min(max(db_errors / 100, connection_pool), 1.0)
}
return {'matches': False}
class ServiceUnavailableRule:
def analyze(self, symptoms: Dict[str, any]) -> Dict[str, any]:
"""分析服务不可用"""
service_status = symptoms.get('service_status', {})
unavailable_services = sum(1 for status in service_status.values()
if status == 'unhealthy')
if unavailable_services > 0:
return {
'matches': True,
'cause': 'service_unavailable',
'confidence': min(unavailable_services / len(service_status), 1.0)
}
return {'matches': False}2. 自动恢复
恢复策略
python
class AutoRecoverySystem:
def __init__(self):
self.recovery_strategies = {
'restart_service': RestartServiceStrategy(),
'clear_cache': ClearCacheStrategy(),
'scale_up': ScaleUpStrategy(),
'failover': FailoverStrategy(),
'rollback': RollbackStrategy()
}
self.recovery_history = []
self.recovery_cooldown = {}
def attempt_recovery(self, fault_diagnosis: Dict[str, any]) -> Dict[str, any]:
"""尝试自动恢复"""
primary_cause = fault_diagnosis['primary_cause']
recommended_actions = fault_diagnosis['recommended_actions']
# 选择恢复策略
strategy = self._select_recovery_strategy(primary_cause, recommended_actions)
if not strategy:
return {
'success': False,
'message': 'No suitable recovery strategy found'
}
# 检查冷却时间
if self._is_in_cooldown(strategy):
return {
'success': False,
'message': f'Recovery strategy {strategy} is in cooldown'
}
# 执行恢复
try:
result = self._execute_recovery(strategy, fault_diagnosis)
# 记录恢复历史
self.recovery_history.append({
'timestamp': time.time(),
'strategy': strategy,
'fault_cause': primary_cause,
'success': result['success'],
'message': result['message']
})
# 设置冷却时间
if result['success']:
self._set_cooldown(strategy, 300) # 5分钟冷却
else:
self._set_cooldown(strategy, 60) # 1分钟冷却
return result
except Exception as e:
return {
'success': False,
'message': f'Recovery execution failed: {str(e)}'
}
def _select_recovery_strategy(self, cause: str, actions: List[str]) -> str:
"""选择恢复策略"""
strategy_mapping = {
'high_response_time': 'clear_cache',
'high_error_rate': 'restart_service',
'memory_leak': 'restart_service',
'database_connection': 'restart_service',
'service_unavailable': 'failover'
}
return strategy_mapping.get(cause)
def _is_in_cooldown(self, strategy: str) -> bool:
"""检查是否在冷却时间"""
if strategy in self.recovery_cooldown:
return time.time() - self.recovery_cooldown[strategy] < 300 # 5分钟冷却
return False
def _set_cooldown(self, strategy: str, duration: int):
"""设置冷却时间"""
self.recovery_cooldown[strategy] = time.time() + duration
def _execute_recovery(self, strategy: str, fault_diagnosis: Dict[str, any]) -> Dict[str, any]:
"""执行恢复"""
if strategy in self.recovery_strategies:
recovery_strategy = self.recovery_strategies[strategy]
return recovery_strategy.execute(fault_diagnosis)
else:
return {
'success': False,
'message': f'Unknown recovery strategy: {strategy}'
}
def get_recovery_history(self, time_range: str = '24h') -> List[Dict[str, any]]:
"""获取恢复历史"""
current_time = time.time()
time_range_seconds = self._parse_time_range(time_range)
return [recovery for recovery in self.recovery_history
if current_time - recovery['timestamp'] <= time_range_seconds]
def _parse_time_range(self, time_range: str) -> int:
"""解析时间范围"""
if time_range.endswith('h'):
return int(time_range[:-1]) * 3600
elif time_range.endswith('d'):
return int(time_range[:-1]) * 86400
else:
return 3600 # 默认1小时
class RestartServiceStrategy:
def execute(self, fault_diagnosis: Dict[str, any]) -> Dict[str, any]:
"""执行服务重启策略"""
try:
# 识别需要重启的服务
services_to_restart = self._identify_services_to_restart(fault_diagnosis)
# 重启服务
for service in services_to_restart:
self._restart_service(service)
return {
'success': True,
'message': f'Successfully restarted services: {services_to_restart}'
}
except Exception as e:
return {
'success': False,
'message': f'Service restart failed: {str(e)}'
}
def _identify_services_to_restart(self, fault_diagnosis: Dict[str, any]) -> List[str]:
"""识别需要重启的服务"""
cause = fault_diagnosis['primary_cause']
if cause == 'high_error_rate':
return ['api_gateway', 'generation_service']
elif cause == 'memory_leak':
return ['generation_service', 'retrieval_service']
elif cause == 'database_connection':
return ['document_service', 'user_service']
else:
return ['api_gateway']
def _restart_service(self, service_name: str):
"""重启服务"""
# 这里应该实现实际的服务重启逻辑
print(f"Restarting service: {service_name}")
class ClearCacheStrategy:
def execute(self, fault_diagnosis: Dict[str, any]) -> Dict[str, any]:
"""执行清理缓存策略"""
try:
# 清理各种缓存
self._clear_redis_cache()
self._clear_memory_cache()
self._clear_application_cache()
return {
'success': True,
'message': 'Successfully cleared all caches'
}
except Exception as e:
return {
'success': False,
'message': f'Cache clearing failed: {str(e)}'
}
def _clear_redis_cache(self):
"""清理Redis缓存"""
# 实现Redis缓存清理
pass
def _clear_memory_cache(self):
"""清理内存缓存"""
# 实现内存缓存清理
pass
def _clear_application_cache(self):
"""清理应用缓存"""
# 实现应用缓存清理
pass
class ScaleUpStrategy:
def execute(self, fault_diagnosis: Dict[str, any]) -> Dict[str, any]:
"""执行扩容策略"""
try:
# 识别需要扩容的服务
services_to_scale = self._identify_services_to_scale(fault_diagnosis)
# 扩容服务
for service in services_to_scale:
self._scale_up_service(service)
return {
'success': True,
'message': f'Successfully scaled up services: {services_to_scale}'
}
except Exception as e:
return {
'success': False,
'message': f'Service scaling failed: {str(e)}'
}
def _identify_services_to_scale(self, fault_diagnosis: Dict[str, any]) -> List[str]:
"""识别需要扩容的服务"""
cause = fault_diagnosis['primary_cause']
if cause == 'high_response_time':
return ['generation_service', 'retrieval_service']
else:
return ['api_gateway']
def _scale_up_service(self, service_name: str):
"""扩容服务"""
# 这里应该实现实际的服务扩容逻辑
print(f"Scaling up service: {service_name}")
class FailoverStrategy:
def execute(self, fault_diagnosis: Dict[str, any]) -> Dict[str, any]:
"""执行故障转移策略"""
try:
# 识别需要故障转移的服务
services_to_failover = self._identify_services_to_failover(fault_diagnosis)
# 执行故障转移
for service in services_to_failover:
self._failover_service(service)
return {
'success': True,
'message': f'Successfully failed over services: {services_to_failover}'
}
except Exception as e:
return {
'success': False,
'message': f'Service failover failed: {str(e)}'
}
def _identify_services_to_failover(self, fault_diagnosis: Dict[str, any]) -> List[str]:
"""识别需要故障转移的服务"""
cause = fault_diagnosis['primary_cause']
if cause == 'service_unavailable':
return ['generation_service', 'retrieval_service']
else:
return []
def _failover_service(self, service_name: str):
"""故障转移服务"""
# 这里应该实现实际的服务故障转移逻辑
print(f"Failing over service: {service_name}")
class RollbackStrategy:
def execute(self, fault_diagnosis: Dict[str, any]) -> Dict[str, any]:
"""执行回滚策略"""
try:
# 识别需要回滚的服务
services_to_rollback = self._identify_services_to_rollback(fault_diagnosis)
# 执行回滚
for service in services_to_rollback:
self._rollback_service(service)
return {
'success': True,
'message': f'Successfully rolled back services: {services_to_rollback}'
}
except Exception as e:
return {
'success': False,
'message': f'Service rollback failed: {str(e)}'
}
def _identify_services_to_rollback(self, fault_diagnosis: Dict[str, any]) -> List[str]:
"""识别需要回滚的服务"""
# 根据故障类型确定需要回滚的服务
return ['api_gateway', 'generation_service']
def _rollback_service(self, service_name: str):
"""回滚服务"""
# 这里应该实现实际的服务回滚逻辑
print(f"Rolling back service: {service_name}")运维自动化
1. 部署自动化
CI/CD流水线
python
class CICDPipeline:
def __init__(self):
self.stages = {
'build': BuildStage(),
'test': TestStage(),
'security': SecurityStage(),
'deploy': DeployStage(),
'monitor': MonitorStage()
}
self.pipeline_config = PipelineConfig()
def execute_pipeline(self, code_changes: Dict[str, any]) -> Dict[str, any]:
"""执行CI/CD流水线"""
pipeline_result = {
'success': True,
'stages': {},
'start_time': time.time(),
'end_time': None
}
try:
# 执行各个阶段
for stage_name, stage in self.stages.items():
print(f"Executing stage: {stage_name}")
stage_result = stage.execute(code_changes)
pipeline_result['stages'][stage_name] = stage_result
if not stage_result['success']:
pipeline_result['success'] = False
pipeline_result['failed_stage'] = stage_name
break
pipeline_result['end_time'] = time.time()
pipeline_result['duration'] = pipeline_result['end_time'] - pipeline_result['start_time']
except Exception as e:
pipeline_result['success'] = False
pipeline_result['error'] = str(e)
pipeline_result['end_time'] = time.time()
return pipeline_result
class BuildStage:
def execute(self, code_changes: Dict[str, any]) -> Dict[str, any]:
"""执行构建阶段"""
try:
# 构建Docker镜像
build_result = self._build_docker_image(code_changes)
# 推送镜像到仓库
push_result = self._push_image_to_registry(build_result['image_id'])
return {
'success': True,
'image_id': build_result['image_id'],
'registry_url': push_result['registry_url'],
'build_time': build_result['build_time']
}
except Exception as e:
return {
'success': False,
'error': str(e)
}
def _build_docker_image(self, code_changes: Dict[str, any]) -> Dict[str, any]:
"""构建Docker镜像"""
# 实现Docker镜像构建逻辑
return {
'image_id': 'rag-system:latest',
'build_time': 120
}
def _push_image_to_registry(self, image_id: str) -> Dict[str, any]:
"""推送镜像到仓库"""
# 实现镜像推送逻辑
return {
'registry_url': 'registry.example.com/rag-system:latest'
}
class TestStage:
def execute(self, code_changes: Dict[str, any]) -> Dict[str, any]:
"""执行测试阶段"""
try:
# 运行单元测试
unit_test_result = self._run_unit_tests()
# 运行集成测试
integration_test_result = self._run_integration_tests()
# 运行性能测试
performance_test_result = self._run_performance_tests()
return {
'success': unit_test_result['success'] and
integration_test_result['success'] and
performance_test_result['success'],
'unit_tests': unit_test_result,
'integration_tests': integration_test_result,
'performance_tests': performance_test_result
}
except Exception as e:
return {
'success': False,
'error': str(e)
}
def _run_unit_tests(self) -> Dict[str, any]:
"""运行单元测试"""
# 实现单元测试逻辑
return {
'success': True,
'test_count': 100,
'passed': 98,
'failed': 2
}
def _run_integration_tests(self) -> Dict[str, any]:
"""运行集成测试"""
# 实现集成测试逻辑
return {
'success': True,
'test_count': 20,
'passed': 20,
'failed': 0
}
def _run_performance_tests(self) -> Dict[str, any]:
"""运行性能测试"""
# 实现性能测试逻辑
return {
'success': True,
'response_time': 1.5,
'throughput': 1000,
'memory_usage': 0.7
}
class SecurityStage:
def execute(self, code_changes: Dict[str, any]) -> Dict[str, any]:
"""执行安全扫描阶段"""
try:
# 代码安全扫描
code_scan_result = self._scan_code_security(code_changes)
# 依赖安全扫描
dependency_scan_result = self._scan_dependency_security()
# 镜像安全扫描
image_scan_result = self._scan_image_security()
return {
'success': code_scan_result['success'] and
dependency_scan_result['success'] and
image_scan_result['success'],
'code_scan': code_scan_result,
'dependency_scan': dependency_scan_result,
'image_scan': image_scan_result
}
except Exception as e:
return {
'success': False,
'error': str(e)
}
def _scan_code_security(self, code_changes: Dict[str, any]) -> Dict[str, any]:
"""代码安全扫描"""
# 实现代码安全扫描逻辑
return {
'success': True,
'vulnerabilities': 0,
'warnings': 2
}
def _scan_dependency_security(self) -> Dict[str, any]:
"""依赖安全扫描"""
# 实现依赖安全扫描逻辑
return {
'success': True,
'vulnerabilities': 0,
'outdated_packages': 3
}
def _scan_image_security(self) -> Dict[str, any]:
"""镜像安全扫描"""
# 实现镜像安全扫描逻辑
return {
'success': True,
'vulnerabilities': 0,
'base_image_issues': 1
}
class DeployStage:
def execute(self, code_changes: Dict[str, any]) -> Dict[str, any]:
"""执行部署阶段"""
try:
# 蓝绿部署
deployment_result = self._blue_green_deploy(code_changes)
# 健康检查
health_check_result = self._health_check_after_deploy()
return {
'success': deployment_result['success'] and health_check_result['success'],
'deployment': deployment_result,
'health_check': health_check_result
}
except Exception as e:
return {
'success': False,
'error': str(e)
}
def _blue_green_deploy(self, code_changes: Dict[str, any]) -> Dict[str, any]:
"""蓝绿部署"""
# 实现蓝绿部署逻辑
return {
'success': True,
'deployment_id': 'deploy-123',
'environment': 'production'
}
def _health_check_after_deploy(self) -> Dict[str, any]:
"""部署后健康检查"""
# 实现健康检查逻辑
return {
'success': True,
'health_score': 0.95
}
class MonitorStage:
def execute(self, code_changes: Dict[str, any]) -> Dict[str, any]:
"""执行监控阶段"""
try:
# 设置监控
monitoring_result = self._setup_monitoring()
# 配置告警
alerting_result = self._setup_alerting()
return {
'success': monitoring_result['success'] and alerting_result['success'],
'monitoring': monitoring_result,
'alerting': alerting_result
}
except Exception as e:
return {
'success': False,
'error': str(e)
}
def _setup_monitoring(self) -> Dict[str, any]:
"""设置监控"""
# 实现监控设置逻辑
return {
'success': True,
'monitoring_endpoints': ['/health', '/metrics']
}
def _setup_alerting(self) -> Dict[str, any]:
"""设置告警"""
# 实现告警设置逻辑
return {
'success': True,
'alert_rules': 10
}2. 配置管理
配置自动化
python
class ConfigurationManager:
def __init__(self):
self.config_store = ConfigStore()
self.config_validator = ConfigValidator()
self.config_templates = ConfigTemplates()
self.config_deployer = ConfigDeployer()
def deploy_configuration(self, environment: str, config_changes: Dict[str, any]) -> Dict[str, any]:
"""部署配置"""
try:
# 验证配置
validation_result = self.config_validator.validate(config_changes)
if not validation_result['valid']:
return {
'success': False,
'error': f"Configuration validation failed: {validation_result['errors']}"
}
# 生成配置
config_result = self._generate_configuration(environment, config_changes)
# 部署配置
deployment_result = self.config_deployer.deploy(environment, config_result)
return {
'success': True,
'config_id': config_result['config_id'],
'deployment_id': deployment_result['deployment_id']
}
except Exception as e:
return {
'success': False,
'error': str(e)
}
def _generate_configuration(self, environment: str, config_changes: Dict[str, any]) -> Dict[str, any]:
"""生成配置"""
# 获取基础配置模板
base_config = self.config_templates.get_base_config(environment)
# 应用配置变更
updated_config = self._apply_config_changes(base_config, config_changes)
# 生成配置ID
config_id = self._generate_config_id(updated_config)
return {
'config_id': config_id,
'environment': environment,
'config': updated_config,
'timestamp': time.time()
}
def _apply_config_changes(self, base_config: Dict[str, any],
config_changes: Dict[str, any]) -> Dict[str, any]:
"""应用配置变更"""
# 深度合并配置
updated_config = base_config.copy()
for key, value in config_changes.items():
if isinstance(value, dict) and key in updated_config:
updated_config[key] = self._apply_config_changes(updated_config[key], value)
else:
updated_config[key] = value
return updated_config
def _generate_config_id(self, config: Dict[str, any]) -> str:
"""生成配置ID"""
import hashlib
content = json.dumps(config, sort_keys=True)
return hashlib.md5(content.encode()).hexdigest()[:8]
class ConfigValidator:
def __init__(self):
self.validation_rules = {
'database_url': self._validate_database_url,
'redis_url': self._validate_redis_url,
'api_timeout': self._validate_api_timeout,
'max_connections': self._validate_max_connections
}
def validate(self, config: Dict[str, any]) -> Dict[str, any]:
"""验证配置"""
errors = []
for key, value in config.items():
if key in self.validation_rules:
try:
self.validation_rules[key](value)
except Exception as e:
errors.append(f"{key}: {str(e)}")
return {
'valid': len(errors) == 0,
'errors': errors
}
def _validate_database_url(self, url: str):
"""验证数据库URL"""
if not url.startswith(('postgresql://', 'mysql://', 'sqlite://')):
raise ValueError("Invalid database URL format")
def _validate_redis_url(self, url: str):
"""验证Redis URL"""
if not url.startswith(('redis://', 'rediss://')):
raise ValueError("Invalid Redis URL format")
def _validate_api_timeout(self, timeout: int):
"""验证API超时"""
if not isinstance(timeout, int) or timeout <= 0:
raise ValueError("API timeout must be a positive integer")
def _validate_max_connections(self, max_conn: int):
"""验证最大连接数"""
if not isinstance(max_conn, int) or max_conn <= 0:
raise ValueError("Max connections must be a positive integer")
class ConfigTemplates:
def __init__(self):
self.templates = {
'development': self._get_development_template(),
'staging': self._get_staging_template(),
'production': self._get_production_template()
}
def get_base_config(self, environment: str) -> Dict[str, any]:
"""获取基础配置模板"""
return self.templates.get(environment, self.templates['development'])
def _get_development_template(self) -> Dict[str, any]:
"""开发环境配置模板"""
return {
'database': {
'url': 'postgresql://localhost:5432/rag_dev',
'pool_size': 5,
'timeout': 30
},
'redis': {
'url': 'redis://localhost:6379',
'timeout': 10
},
'api': {
'timeout': 30,
'max_connections': 100
},
'logging': {
'level': 'DEBUG',
'format': '%(asctime)s - %(name)s - %(levelname)s - %(message)s'
}
}
def _get_staging_template(self) -> Dict[str, any]:
"""预发布环境配置模板"""
return {
'database': {
'url': 'postgresql://staging-db:5432/rag_staging',
'pool_size': 10,
'timeout': 30
},
'redis': {
'url': 'redis://staging-redis:6379',
'timeout': 10
},
'api': {
'timeout': 30,
'max_connections': 200
},
'logging': {
'level': 'INFO',
'format': '%(asctime)s - %(name)s - %(levelname)s - %(message)s'
}
}
def _get_production_template(self) -> Dict[str, any]:
"""生产环境配置模板"""
return {
'database': {
'url': 'postgresql://prod-db:5432/rag_prod',
'pool_size': 20,
'timeout': 30
},
'redis': {
'url': 'redis://prod-redis:6379',
'timeout': 10
},
'api': {
'timeout': 30,
'max_connections': 500
},
'logging': {
'level': 'WARNING',
'format': '%(asctime)s - %(name)s - %(levelname)s - %(message)s'
}
}
class ConfigDeployer:
def __init__(self):
self.deployment_strategies = {
'rolling': RollingDeploymentStrategy(),
'blue_green': BlueGreenDeploymentStrategy(),
'canary': CanaryDeploymentStrategy()
}
def deploy(self, environment: str, config: Dict[str, any]) -> Dict[str, any]:
"""部署配置"""
try:
# 选择部署策略
strategy = self._select_deployment_strategy(environment)
# 执行部署
deployment_result = strategy.deploy(config)
return {
'success': True,
'deployment_id': deployment_result['deployment_id'],
'strategy': strategy.__class__.__name__
}
except Exception as e:
return {
'success': False,
'error': str(e)
}
def _select_deployment_strategy(self, environment: str) -> any:
"""选择部署策略"""
if environment == 'production':
return self.deployment_strategies['blue_green']
elif environment == 'staging':
return self.deployment_strategies['canary']
else:
return self.deployment_strategies['rolling']
class RollingDeploymentStrategy:
def deploy(self, config: Dict[str, any]) -> Dict[str, any]:
"""滚动部署"""
# 实现滚动部署逻辑
return {
'deployment_id': 'rolling-deploy-123',
'status': 'completed'
}
class BlueGreenDeploymentStrategy:
def deploy(self, config: Dict[str, any]) -> Dict[str, any]:
"""蓝绿部署"""
# 实现蓝绿部署逻辑
return {
'deployment_id': 'blue-green-deploy-123',
'status': 'completed'
}
class CanaryDeploymentStrategy:
def deploy(self, config: Dict[str, any]) -> Dict[str, any]:
"""金丝雀部署"""
# 实现金丝雀部署逻辑
return {
'deployment_id': 'canary-deploy-123',
'status': 'completed'
}最佳实践
1. 监控策略
python
def select_monitoring_strategy(requirements: dict) -> List[str]:
"""选择监控策略"""
strategies = []
if requirements['real_time']:
strategies.append('real_time_monitoring')
if requirements['predictive']:
strategies.append('predictive_monitoring')
if requirements['distributed']:
strategies.append('distributed_monitoring')
if requirements['cost_effective']:
strategies.append('cost_effective_monitoring')
return strategies2. 运维建议
python
class OperationsAdvisor:
def __init__(self):
self.operation_patterns = {}
def get_operation_recommendations(self, system_metrics: Dict[str, float]) -> List[str]:
"""获取运维建议"""
recommendations = []
# 基于系统指标提供建议
if system_metrics.get('availability', 0) < 0.99:
recommendations.append("提高系统可用性,检查故障恢复机制")
if system_metrics.get('response_time', 0) > 2.0:
recommendations.append("优化响应时间,检查性能瓶颈")
if system_metrics.get('error_rate', 0) > 0.01:
recommendations.append("降低错误率,检查错误处理机制")
if system_metrics.get('resource_usage', 0) > 0.8:
recommendations.append("优化资源使用,考虑扩容或优化")
return recommendations总结
RAG系统的监控与运维是确保系统稳定运行的关键技术。本文介绍了监控与运维的核心概念、方法和最佳实践,包括监控体系设计、指标监控、告警系统、健康检查、故障处理、自动恢复和运维自动化等方面。
关键要点:
- 全面监控:建立多层次的监控体系
- 智能告警:实现智能化的告警管理
- 健康检查:建立完善的服务健康检查机制
- 自动恢复:实现故障的自动诊断和恢复
- 运维自动化:通过CI/CD和配置管理实现运维自动化
在下一篇文章中,我们将探讨实战案例,了解RAG系统在实际应用中的实现。
下一步学习建议:
- 阅读《企业知识库问答》,了解RAG系统在企业中的应用
- 实践监控和运维技术,建立完善的监控体系
- 关注RAG系统监控与运维技术的最新发展和创新方案
